

Classifying the Stars

Today:

- Stellar spectra: temperatures and compositions
- Are hotter stars brighter? (H-R diagrams)
- Determining sizes of stars
- Classifying stars, looking for patterns

Pleiades Spectra

Copyright Anglo-Australian Observatory/Royal Observatory, Edinburgh

Edward Pickering and Harvard "computers," 1890's - 1920's

Annie Jump Cannon

Classifying stellar spectra

Classifying Stellar Spectra

"OBAFGKM"

HD 12993
HD 158659
HD 30584
HD 116608
HD 9547
HD 10032
BD 610367
HD 28099
HD 70178
HD 23524
SAO 76803
HD 260655
Yale 1755

What are the stars made of?

Hydrogen Helium

Hydrogen

Hydrogen

HD 12993
HD 158659
HD 30584
HD 116608
HD 9547
HD 10032
BD 610367
HD 28099
HD 70178
HD 23524
SAO 76803
HD 260655
Yale 1755

Calcium
Magnesium
Sodium
"We understand the possibility of determining [celestial bodies'] shapes, their distances, their sizes and motions, whereas never, by any means, will we be able to study their chemical composition.
--Auguste Comte (philosopher), 1835

How does temperature affect spectral lines?

Cecilia Payne at Harvard, 1924

In the sun, only one H atom in a million is in level 2, ready to absorb visible light!

The Universal Recipe of the Stars

- 74\% hydrogen (by mass)
- 25% helium
- 1% other elements (for most stars)

Temperature (degrees Kelvin)

Are hotter stars brighter?

Plot known stars on "Hertzsprung-Russell (H-R) diagram". Luminosity increases vertically; temperature increases to the left.

Most stars' dots lie along a diagonal ("main sequence"), the hotter the brighter.

H-R Diagram Patterns

Luminosity =

(constant) x (surface area) x (temperature) ${ }^{4}$

For a given size, hotter implies brighter.

A bright, cool star must be unusually large ("red giant").

A faint, hot star must be unusually small ("white dwarf").

H-R Diagram Patterns

Most of the stars near us are fainter (and cooler) than the sun; most of the familiar stars in the night sky are brighter than the sun.

Sizes of Main-Sequence Stars

Summary of Stellar Properties

Distance	Measure using parallax (if close enough)
Velocity	Proper motion and Doppler shift
Luminosity	Calculate from apparent brightness and distance
Temperature	From overall color or spectral class
Composition	From detailed analysis of spectral lines
Size	Calculate from temperature and luminosity

The Hertzsprung-Russell Diagram

A very useful diagram for understanding stars

- We plot two major properties of stars:
- Temperature (x) vs. Luminosity (y)
- Spectral Type (x) vs. Absolute Magnitude (y)
- Stars tend to group into certain areas

Normal hydrogenburning stars reside on the main sequence of the H-R diagram

The Main Sequence (MS)

$$
\begin{aligned}
& 90 \% \text { of all } \\
& \text { stars lie on } \\
& \text { the main } \\
& \text { sequence }
\end{aligned}
$$

Stars with low temperature and high luminosity must have large radius

H-R diagram depicts:

Temperature

Color
Spectral Type
Luminosity
Radius
*Mass
*Lifespan
*Age

Which star is a main-sequence star?

Which star is a main-sequence star?

Which star has the largest radius?

Which star has

Which of these stars can be no more than 10 million years old?

Regions of the H-R Diagram

