The Physics of Light

How fast does light travel?

- With today's fast electronics, it's easy to measure the time for a pulse of light to cross an ordinary room (billionths of a second).
- First measurement of the speed of light was by an astronomer: Olaus Roemer, 1675.

Jupiter's moons seem to orbit faster when earth is moving toward Jupiter, slower when earth is moving away.

How fast does light travel?

Jupiter's moons appear to get 8 minutes ahead of schedule when we're close, 8 minutes behind schedule when we're on the far side.

So light must take 8 minutes to travel 1 AU.
(Size of 1 AU was measured around 1700, by triangulating Mars, Venus from 2 locations on earth, with aid of telescopes.)

Speed of Light

$300,000,000$ meters per second (m / s) or $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ or $300,000 \mathrm{~km} / \mathrm{s}$

Example: How long does it take light to reach you from the screen/dome?

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

\rightarrow time $=\frac{\text { distance }}{\text { speed }}=\frac{6 \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=2 \times 10^{-8} \mathrm{~s}$.
(Be sure that you know how to use your calculator!)

How to quantify brightness?

Light carries ENERGY.

What is energy?

I don't know.

Types of energy

Motion ("kinetic")
Gravitational

Elastic
Thermal
Chemical
Nuclear
Electrical
Radiant (light)

Energy can be converted from one type to another, but cannot be created or destroyed. The total amount of energy in the universe never changes.

Units of energy

1 joule (official scientific unit; apple lifted 1 meter)
1 Calorie (food) $=4200$ joules (1 kg water, up $1^{\circ} \mathrm{C}$)
1 Jelly Donut $=250$ Calories $=10^{6}$ joules (\$0.59)
$1 \mathrm{BTU}=1050$ joules (1 lb water, up $1^{\circ} \mathrm{F}$)
1 kilowatt-hour = 3.6 million joules (7 cents)
1 gallon of gasoline provides 30,000 Calories (\$3.00)
Typical American diet per day = 10 J.D.

Power = Rate of energy conversion = energy / time

Power is measured in watts:

$$
1 \text { watt = } 1 \text { joule } / \text { second }
$$

(1 kilowatt = 1000 watts; 1 horsepower $=750$ watts; you convert energy at a rate of about 100 watts.)

The "brightness" of a light source is really its power, measured in watts. The "intensity" of light striking a surface is measured in watts per square meter.
Example: The power of our sun is about 4×10^{26} watts; the intensity of direct sunlight at earth's surface is about 1000 watts per square meter.

Light as a Wave

What is light (particles or waves?)

It behaves like both!

Water waves:

"Diffraction"

Waves can spread out, bend around barriers, and cancel each other out.

Light does all these things, so we say it's a wave, even though we don't see the waves themselves.

To measure wavelength, use a "diffraction grating":

"Diffraction"

Waves can spread out, bend around barriers, and cancel each other out.

Light does all these things, so we say it's a wave, even though we don't see the waves themselves.

To measure wavelength, use a "diffraction grating":

Grating

With light, wavelength determines color

Most "colors" are invisible to our eyes!

White light is a mixture of the visible colors

Visible range: 400 nanometers (violet)
to 700 nanometers (red)
(1 nanometer $(\mathrm{nm})=10^{-9}$ meters)

Light also behaves like particles ("photons")

A 100-watt bulb emits 3×10^{20} photons per second
The energy per photon depends on the wavelength of the light: shorter wavelength (faster "wiggling") implies higher energy per photon.
So a blue photon packs more punch than a red photon; an ultraviolet photon can break molecules apart, and an x-ray photon is still more energetic.

