

Kepler's Laws

Tycho Brahe Danish astronomer, 1546-1601

Tycho made highly accurate (within 1/60 degree) nakedeye observations of the positions of stars and planets over many years.

He proposed a compromise model in which all the other planets orbit the sun, but the sun orbits the earth.

Johannes Kepler German astronomer, 1571-1630

Kepler worked under Tycho during 1600-1601, then inherited the records of
Tycho's detailed observations.

He accepted the Copernican hypothesis, but abandoned the assumption that all motions are circular.

The Orbit of Mars
 based on Tycho's observations

Toward Mars

The Orbit of Mars

The Orbit of Mars

The Orbit is an Ellipse!

The sun is at one focus; there's nothing at the other.

Planets go faster when they're close to the sun

A line drawn from the sun to the planet sweeps out equal areas in equal times.

Outer planets move slower than inner planets.

	Time (yr)	Radius (AU)		
Mercury	0.24	0.39		
Venus	0.61	0.72		
Earth	1.00	1.00		
Mars	1.88	1.52		
Jupiter	11.86	5.20		
Saturn	29.46	9.54		

Outer planets move slower than inner planets.

	Time (yr)	Radius (AU)	(Time)	(Radius)
Mercury	0.24	0.39		
Venus	0.61	0.72	0.37	0.37
Earth	1.00	1.00		
Mars	1.88	1.52		
Jupiter	11.86	5.20		
Saturn	29.46	9.54		

Outer planets move slower than inner planets.

	Time (yr)	Radius (AU)	(Time) 2	(Radius) 3
Mercury	0.24	0.39	0.058	0.059
Venus	0.61	0.72	0.37	0.37
Earth	1.00	1.00	1.00	1.00
Mars	1.88	1.52	3.53	3.51
Jupiter	11.86	5.20	140.7	140.6
Saturn	29.46	9.54	867.9	868.3

$(\text { Time in years })^{2}=(\text { Radius in AU) })^{3}$

Kepler's Laws

1. Orbits are ellipses, with sun at one focus.
2. Equal areas in equal times (faster when close to sun)
3. $(\text { Time in years })^{2}=(\text { Radius in } \mathrm{AU})^{3}$

Bottom line: The universe speaks math!

